

Honeydoop - A System for Creating Virtual
Honeypots Using Hadoop

Miss. Sumaiyya Z. Khan , Prof. D.M.Dakhane , Prof. R.L.Pardhi

Sipna College Of Engineering and Technology, Amravati,
 Maharashtra, India.

Abstract— System security personnel fight a seemingly
unending battle to secure their digital assets against an ever-
increasing onslaught of attacks. Honeypots- A security
resource whose value lies in being probed, attacked, or
compromised, provides a valuable tool to collect information
about the behaviors of attackers in order to design and
implement better defenses. Any commander will often tell his
soldiers that to secure yourself against the enemy, you have to
first know who your enemy is. This military doctrine readily
applies to the world of network security. Just like the military,
you have resources that you are trying to protect. To help
protect these resources, you need to know who is your threat
and how they are going to attack. On demand allocation of
honeypots at right places on the network and at right time
would considerably make the network more secure and harder
to sneak into. This system is based on an idea of dynamically
creating, modifying and managing virtual honeypots. This
system combines the concept of honeypots and uses big data
analyzer, Hadoop for quick information retrieval and analysis.
The goal of this system is to create evanescent honeypots at
right places and times, on demand.

Keywords— Honeypots, Virtual Honeypots, Hadoop, Dynamic
Honeypot Construction.

I. INTRODUCTION
"A honeypot is an information system resource whose

value lies in unauthorized or illicit use of that resource [1].”
This means that whatever we designate as a honeypot, it is
our expectation and goal to have the system probed,
attacked, and potentially exploited. The honeypot contains
no data or applications critical to the company but has
enough interesting data to lure a cracker- a programmer
who cracks (gains unauthorized access to) computers,
typically to do malicious things.

Most current configurations are static setups consisting
of either low interaction or high-interaction environments.
Low-interaction honeypots have limited interaction, they
normally work by emulating services and operating
systems. Attacker activity is limited to the level of
emulation by the honeypot. High-interaction honeypots are
different, they are usually complex solutions as they involve
real operating systems and applications. Nothing is
emulated, we give attackers the real thing. That is, some of
the vulnerable or important systems are identified
beforehand, and their corresponding honeypots are
maintained. It is unfeasible to maintain honeypots
pertaining to the entire network.

To solve this problem, dynamic honeypots came to
rescue. Dynamic Honeypot is a solution, you simply plug
into your network, it learns the environment, deploys the

proper number and configuration of honeypots, and adapts
to any changes in your networks [7]. Although there are
some dynamic Honeypots, deployment of right number of
virtual Honeypots at right places and at right time on
demand is the need of the hour.

A physical honeypot is a real machine with its own IP
address. Deploying a physical honeypot is often time
intensive and expensive as different operating systems
require specialized hardware and every honeypot requires
its own physical system. A virtual honeypot is a simulated
machine with modeled behaviors, one of which is the
ability to respond to network traffic. Multiple virtual
honeypots can be simulated on a single system [10].

Hadoop is a “flexible and available architecture for
large scale computation and data processing on a network
of commodity hardware” [9]. It is an open source
framework for processing, storing and analyzing massive
amounts of distributed unstructured data. It was designed to
handle Petabytes and Exabyte’s of data distributed over
multiple nodes in parallel. Hadoop clusters run on
inexpensive commodity hardware so projects can scale-out
without breaking the bank.

II. ANALYSIS OF PROBLEM
There are two systems A and B in a network (See Fig.

1) System B was found to be important and had its
equivalent honeypot B'. System A did not have its
equivalent honeypot. If an attacker tries to exploit A without
falling for honeypot B', the main purpose of having a
honeypot in the network is unused. It is expensive to
maintain honeypots that yield us no information
whatsoever. It is imperative to maintain only those
honeypots that could be potential targets for the attacker.
Had there been a honeypot for A, it could have provided us
a great deal of information.

Fig. 1: Honeypot deployed in an Ordinary Network.

Sumaiyya Z. Khan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3250 -3253

3250

III. PROPOSED WORK
 The problem mentioned above is solved in the

following manner. In this endeavor, no honeypots are
deployed beforehand. The honeypots are generated 'on-
demand', as per the needs generated by the network. This
will not only solve the above problem but it is also an
efficient way to do so. (See Fig. 2)

Fig. 2: Network running Honeydoop.

The attacker will experience an obscured network and

will be redirected to the newly created honeypot on trying
to connect the victim machine. Thus the machine will
remain secure from present as well as such other malicious
attacks in the future.

IV. SYSTEM MODULES

The proposed system can be broadly divided into four
main modules (See Fig. 3):
A. Intrusion detector: This module will detect intrusion

attempt in a network and provide IP address of the
system being attacked.

B. Enumerator: This module will generate log files of a
system on a periodic basis and to store them in
database.

C. Auditor: This module will search for log files of the
system in the Hadoop database that is under attack.

D. Honeypot Manager: This module will deploy a virtual
system that is exactly the same replica of the system
being attacked.

Fig. 3: System Modules.

V. IMPLEMENTATION

 All the system modules present in Figure 3 are
implemented in the following manner:

A. Intrusion Detector
For detecting intrusion in our system we implemented

the Genetic Algorithm (GA) [11]. A Genetic Algorithm
(GA) is a programming technique that mimics biological
evolution as a problem-solving strategy. It is based on
Darwinian’s principle of evolution and survival of fittest to
optimize a population of candidate solutions towards a pre-
defined fitness.

GA uses an evolution and natural selection that uses a
chromosome-like data structure and evolve the
chromosomes using selection, recombination and mutation
operators. The process usually begins with randomly
generated population of chromosomes, which represent all
possible solution of a problem that are considered candidate
solutions. From each chromosome different positions are
encoded as bits, characters or numbers. These positions
could be referred to as genes. An evaluation function is
used to calculate the goodness of each chromosome
according to the desired solution; this function is known as
“Fitness Function”. During the process of evaluation
“Crossover” is used to simulate natural reproduction and
“Mutation” is used to mutation of species. For survival and
combination the selection of chromosomes is biased
towards the fittest chromosomes.

Figure 4 shows the operations of a general genetic
algorithm according to which GA is implemented into our
system.

Fig. 4: Flowchart of Genetic Algorithm

We will implement GA on the pfirewall.log file

generated by the Windows Firewall. For generating the
pfirewall.log file, following steps has to be followed:

1. Go to Start and then search for wf.msc file.
2. Selecting wf.msc file will open Windows Firewall

with Advanced Security.
3. Select Windows Firewall Properties.
4. Create pfirewall.log file by customizing following

logging settings for Domain, Private and Public
profile.
Log dropped packets: Yes

Sumaiyya Z. Khan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3250 -3253

3251

Log successful connections: Yes
5. This will create the pfirewall.log file of default

size as 4096 kBs at desired location.
On opening the pfirewall.log file, it will appear as
shown in Figure 5 below.

Fig. 5: pfirewall.log file

Genetic Algorithm of Our System:
1. Of the 17 fields present in the pfirewall.log file we will

read the contents of 3rd, 5th, 6th and 9th field i.e. the
action, scr-ip, dst-ip and size respectively line by line
and take them as input for implementing the GA.

2. The rule base for implementing GA.
 It consists of following two criteria:
 a) If the log entry, in action field= DROP and its dst-ip

ends with number other than 255 then these dropped
packets can be considered suspicious.

 b) If size of the packet > fitness function then, that
packet is identified as intrusion packet.

3. Now, if the src-ip and dst-ip for two or more packets
are same their respective packet sizes are added up
together and that repeated combination is replaced by
new combination of src-ip, dst-ip and packet size.

4. Following parameters are fixed on the basis of which
GA will work:

 Number of iterations=5
 Mutation factor=0.6
 Detection Threshold=0.1
5. Fitness function for GA is calculated using following

formula:
 Fitness (Mean Size) = (addition of cumulative packet

size)/(total number of packets present in the
pfirewall.log file)

6. Size of each packet is compared with that of the fitness
function.

 If the size of packet < mean size then the packet is safe.
Crossover operation is done i.e. the packet goes from
current iteration to next iteration.

 If the size of packet > mean size then that packet is
moved to next iteration.

7. Step 5. and 6. are repeated.
8. If the outputs for two iterations are same then the

fitness function is multiplied by the mutation factor and
step vi) is repeated.

9. Even after doing step 8. the outputs for two iterations
are same then the mutation factor is increased by
1/(Number of iterations) and step 6. is repeated.

10. In the last iteration, the packets present are identified as
intrusion packets based on the detection threshold. If
the ratio of number of packets present in the last
iteration is greater than detection threshold, then that
packet is identified as intrusion packets.

B. Enumerator:
All the ip’s identified as intrusion ip’s by the GA are

sent to the Hadoop MapReduce cluster. Hadoop
MapReduce cluster works as an enumerator by keeping
record of all detected ip’s. We will keep this on the machine
which will act as a server.

C. Auditor:
The Auditor is one of the main backbones of the

system. It keeps track on the ip’s of all the clients sending
request to our server. If the client ip matches with that
present in the Hadoop MapReduce cluster then it is
redirected to Honeypot server. Otherwise the client is
directed to normal server.

D. Honeypot Manager:
A dynamic virtual honeypot is generated by the

honeypot manager when the request arrives from the ip
present in Hadoop MapReduce cluster, as this ip is
identified as suspicious by our intrusion detector. The
attacker without his/her knowledge is then redirected to the
honeypot server.

VI. RESULTS
We saved 5 different pfirewall.log files generated by

the Windows Firewall in a period of 10 days and gave these
files individually as input to GA in our intrusion detector.
After that we kept record of the number of ip’s identified as
intrusional by GA and plotted these number of ip’s against
its corresponding individual pfirewall.log file.

We obtained the following results from this, which is as
shown in Figure 6.

Fig. 6: Number of intrusional ip’s identified by GA using 5 different
pfirewall.log files

0

50

100

150

200

250

300

1 2 3 4 5

Number of intrusional ip's identified
by GA

Number of intrusional ip's identified by GA

Sumaiyya Z. Khan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3250 -3253

3252

VII. APPLICATIONS
1. Intrusion Detection: Intrusion Detection is the art of

detecting inappropriate, incorrect, or anomalous
activity. Honeydoop can be used to determine if a
computer network or server has experienced an
unauthorized intrusion.

2. Social Networking: Web-based social systems enable
new community-based opportunities for participants to
engage, share, and interact. This community value and
related services like search and advertising are
threatened by spammers, content polluters, and malware
disseminators. In an effort to preserve community value
and ensure long-term success, we can use proposed
system for uncovering social spammers in online social
systems.

3. Network Forensics: Network forensics deals with the
capture, recording and analysis of network events in
order to discover evidential information about the
source of security attacks in a court of law. Using this
system we can gather intelligence about the enemy and
the tools and tactics of network intruders.

4. Campus Net Security: With the development of digital
campus construction, the campus network size has been
rapid growth, but there are also many network security
problems. If this system is applied to the campus
network it can make the security of campus network
unobstructed.

VIII. CONCLUSION

Honeydoop makes possible the creation of dynamic,
virtual honeypots using Hadoop. It fulfills the goal of
creating evanescent honeypots at right places and times, on
demand, to achieve better security in this ever changing
environment. The use of Genetic Algorithm for intrusion
detection yields a stronger firewall, by identifying number
of intrusional ip’s (Figure No. 6). This complete system
would greatly benefit the entire computing community at
large by bolstering our defenses.

IX. FUTURE SCOPE

Fig. 7: Future Scope

 Figure No. 7 shows the future scope of Honeydoop. In
this, our system is implemented on an organization network
consisting of ‘n’ number of systems. Each system creates its
own pfirewall.log file and logs it on the Hadoop
MapReduce cluster. Now, if any client sends request to any
system, here suppose system ‘2’ then it is checked whether
the ip of that requesting client is compared with that present
in Hadoop cluster. If the ip matches then the client is
identified as an attacker and it is automatically redirected to
the Virtual on-demand Honeypot for system ‘2’ deployed by
the Honeypot Manager. As a result of this the system ‘2’ is
safe from all present and future attacks. Similarly all the
systems present in the organization network are safe.

REFERENCES

[1] Lance Spitzner, Honeypots: Definitions and value of Honeypots.
http://www.tracking-hackers.com.

[2] John P. John, Fang Yuet et al., Heat-seeking Honeypots: Design and
Experience. In Proceedings of WWW 2011-Session Web Security,
2011.

[3] Christopher Hecker, Kara L. Nance, and Brian Hay, ASSERT Centre,
University of Alaska Fairbanks. Dynamic Honeypot Construction. In
proceedings of the 10th Colloquium for Information Systems
Security Education University of Maryland, University College
Adelphi, MD June 5-8, 2006.

[4] L. Spitzner, 2002, Honeypots tracking Hackers. lsted. Boston, MA,
USA: Addison Wesley.

[5] The Bait and Switch Honeypot,
http://www.violating.us/projects/baitnswitch/

[6] The Honeynet Project, http://www.honeynet.org.
[7] L. Spitzner, Dynamic Honeypots,

http://www.securityfocus.com/infocus/1731, Sept. 2003.
[8] BAIT-TRAP,

http://www.cs.purdue.edu/homes/jiangx/BaitTrap, Dec. 2003.
[9] Research paper entitled A Study on “Role of Hadoop in Information

Technology era” by Vidyasagar S.D.
[10] A Virtual Honeypot Framework by Neils Provos, Google, Inc.
[11] Research paper on “An Implementation Of Intrusion Detection

System Using Genetic Algorithm” by Mohammad Sazzadul Hoque,
Md. Abdul Mukit and Md. Abu Naser Bikas.

Sumaiyya Z. Khan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3250 -3253

3253

